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1. Introduction 

The topology optimization problem for arch systems (archgrids) was first put forward by G.I.N. Rozvany 

and W. Prager in [6] and further studied in e.g. [7, 8, 9]. The Authors discussed the optimality conditions 

for a structure composed of plane arches, pinned at the boundary Γ of a given plane region Ω, and 

transmitting to that boundary a load of given intensity 𝑞(𝑥, 𝑦), where (𝑥, 𝑦) ∈ Ω. Such an arch system 

is best visualized as a ribbed vault (arch-like roof) spanning Ω. The optimization problem is to create  

a structure whose weight is minimum possible, while assuming that: i) stresses in the entire system 

are only compressional; ii) axes of all arches belong to the same surface 𝑓 = 𝑓(𝑥, 𝑦), referred to as the 

archgrid elevation function; iii) each single axis belongs to a plane perpendicular to region Ω. Arches in 

the vault form of a dense grid of curved bars carrying the load independently of one another. 

Therefore, the mechanics of a Rozvany-Prager archgrid is that of a gridwork shell and not a shell 

continuum.  

Optimality conditions for Rozvany-Prager arch systems are compatible with those for Michell frames 

but with univalent – in our case compressional – stresses. Consequently, we say that optimal arch 

system is at the verge of a plastic failure, with each single arch uniformly compressed to the limit value, 

say 𝜎𝐶 > 0. This, in turn, involves an implicit requirement that members of optimally designed archgrid 

are bending- and shear-free. In other words, external load is carried by arches subjected to axial stress 

resultants only. Despite obvious similarities between the two theories, accommodating the Rozvany-

Prager approach in computational algorithms for Michell structures is not straightforward. Loosely 

speaking, the main difficulty is in redefining the optimality conditions from point-wise (Michell) to arch-

wise (Rozvany-Prager). 

2. Computational procedure for archgrid optimization 

Modern approach to archgrid optimization problem, see [2, 3, 4, 5], involves mathematical techniques 

of calculus of variations, thus paving way for numerical procedures in the continuous and discrete 

settings. In this note, we follow the latter. Numerics of the discrete approach to Rozvany-Prager 

archgrids is considered from the perspective based on Second-Order Cone Programming (SOCP), see 

[1] for theoretical introduction to this method. Procedures used for solving the examples are coded in 

MATLAB combined with MOSEK optimization toolbox for SOCP routines. Computational algorithm 

used in this outlook proves to be very efficient in terms of CPU-time. It allows for analyzing the 

structures with a very large (∼ 106) number of arches. Results obtained for such extremely populated 

archgrids clearly exceed the rational needs of civil engineering industry, but they may well serve to 

hint the research aimed at benchmark solutions to optimization problems. Numerical simulations for 

this note were performed on a laptop computer equipped with the Intel Core i7-4600U CPU @ 2.10 
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GHz (2 processors), 8 GB RAM, 64-bit Windows 10 Pro, MathWorks MATLAB R2021a and MOSEK 

optimization toolbox version 9.2. 

It turns out, that the minimum volume, 𝑉𝑚𝑖𝑛, of a vault is proportional to sup < 𝑞; 𝑓 >, with “sup” 

operation taken over all functions 𝑓 = 𝑓(𝑥, 𝑦) satisfying the kinematic constraints imposed in the 

theory of Rozvany and Prager. Technically, these constraints are: i) 𝑓 = 0 at Γ, and ii) 𝑠𝐾 = ∇𝑓 ⋅ 𝒆𝐾 

(𝐾 = 1, … , 𝑘). Here 𝐞𝐾 stands for the direction of the axis 𝑥𝐾 orienting the 𝐾-th arch with respect to 

the coordinate system (𝑥, 𝑦) ∈ Ω, see Fig. 1, and 𝑘 denotes the total number of arches in the archgrid. 

More precisely, the 𝐾-th arch is considered optimal if the Euclidean norm of the slope function 𝑠𝐾  

satisfies 

 ‖𝑠𝐾‖2 = √𝐿𝐾 , ‖𝑠𝐾‖2 = ( ∫ (𝑠𝐾(𝑥𝐾))
2

𝑑𝑥𝐾

𝐿𝐾

0

)

1
2

, (1) 

   
where 𝐿𝐾 is the length of the 𝐾-th arch chord. The requirement in (1) is known in the literature as the 

Rozvany-Prager mean squared slope condition. 
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Figure 1. a) load 𝑞 = 𝑞(𝑥, 𝑦) over domain Ω with boundary Γ; b) archgrid elevation function 𝑓 = 𝑓(𝑥, 𝑦) shown 

in transparent grey, single arch elevation functions are shown as thick black lines, 𝑞𝐾 represents arch load acting 

on the 𝐾-th arch. 
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In the finite-dimensional context, we choose a mesh of 𝑛 nodes in Ω at which the elevation of surface 

𝑓 is sampled, and we write 𝐟 ∈ ℝ𝑛 for the vector of elevations and 𝐪 ∈ ℝ𝑛 for the load vector.  Slope 

functions 𝑠𝐾  are replaced by vectors 𝐬𝐾 = 𝐁𝐾𝐟, with matrices 𝐁𝐾 (𝐾 = 1, … , 𝑘) taking the place of the 

gradient and projection operations in ii) above. This allows for categorizing the Rozvany-Prager 

minimum volume problem in terms of Second-Order Cone Programming, see [4], 

(P) 

𝑉𝑚𝑖𝑛 =
2

𝜎𝐶
max {𝐪𝑇  𝐟 | 𝐟 ∈ ℱ}, 

where: 

ℱ = { 𝐟 |  

𝐟 ∈ ℝ𝑛 and 𝑓𝑁 = 0 if 𝑁-th node is placed at Γ ;

(√𝐿𝐾, 𝐁𝐾𝐟) ∈ 𝒞 .
 }.  

 

   
Here, 𝒞 stands for the second-order (quadratic) cone, i.e.  

 𝒞  = {(𝑎, 𝐛) |  𝑎 ≥ ‖𝐛‖2} , (2) 

   
where 𝑎 is a positive scalar and ‖𝐛‖2 now stands for the Euclidean norm of vector 𝐛. Optimization 

problem dual to (P) is typically introduced by the use of Lagrange multiplier technique, see [1]. 

Determining the values of dual variables is standard in MOSEK; we do not elaborate on this topic here 

for the reason of space. Let us only mention that having the dual variables, say (𝐓1, … , 𝐓𝑘), one may 

calculate the vectors (𝐀1, … , 𝐀𝑘) comprising the values of a step-function representing the varying 

cross-section area of each arch. 

3. Example 

In the example, we consider the Ω = [0,2𝐿] × [0,2𝐿] and the load case 𝑞 = const. acting above entire 

Ω, see Fig. 2. Results obtained with help of the SOCP approach are compared with the conclusions from 

the study in [3], where the minimum volume problem was solved in the continuous setting; see Tab. 1 

for the collected results. More precisely, the elevation function 𝑓 has been approximated in terms of 

the Fourier (trigonometric) and Legendre (polynomial) series in the orthogonal coordinates. For this 

reason, the comparison of results is limited to the orthogonal layout of arches. 
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a)       b) 

Figure 2. a) Optimal archgrid elevation function 𝑓; b) optimal cross-section area functions for arches at  

𝑥 = 0.6𝐿 (bottom line), and 𝑥 = 𝐿 (top line). 
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Table 1. Square domain Ω with 𝑞 = const.  above the entire domain. Comparison of results obtained for 

different numerical approaches. 

number of arches 
along 𝑥 and 𝑦 

discrete approach with 
SOCP,  

[this note] 

continuous approach with 
Fourier approximation,  

[3] 

continuous approach with 
Legendre approximation, 

[3] 

CPU time 
optimal  
volume 

CPU time 
optimal  
volume 

CPU time 
optimal  
volume 

45 0.5 sec. 3.677 
𝑞𝐿3

𝜎0
 131 sec. 3.681 

𝑞𝐿3

𝜎0
 167 sec. 3.681 

𝑞𝐿3

𝜎0
 

100 1.7 sec. 3.680 
𝑞𝐿3

𝜎0
 4784 sec. 3.681 

𝑞𝐿3

𝜎0
 9063 sec. 3.681 

𝑞𝐿3

𝜎0
 

1000 216 sec. 3.681 
𝑞𝐿3

𝜎0
 

out of 
memory 

- 
out of 

memory 
- 
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