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1. Introduction and motivation 

This study is devoted to Bayesian approach for parametric identification of a structure equipped with 

semi-actively lockable joints. Such joints can operate in two different states: unlocked (working as a 

hinge) or locked (transmitting bending moment). They can be used to provide the effect of modal cou-

pling that allows to precisely control of the mechanical energy flow between vibration modes [1]. The 

fact that locking/unlocking of the joint removes/adds one rotational degree of freedom (DOF) intro-

duces additional difficulty related to the nonlinear nature of such a reconfigurable system.  

Classical methods for modal updating based on mode sensitivity require comparison of modal param-

eters extracted from measurement data with those obtained numerically. Major disadvantage of this 

approach is a mode matching problem, because often not all modes are identified during measure-

ment and their order can be inconsistent with the updated model [2, 3]. Moreover, due to mode 

switching effect numerically calculated modes can change during model updating process. Therefore 

in this study, a Bayesian approach-based probabilistic framework [4] is proposed that allows to over-

come the above mentioned problems. 

2. Structure under consideration 

Steel structure shown in Figure 1a is equipped with six lockable joints. Beams and lockable joints are 

connected by screws. Such a connection is characterized by highly uncertain stiffness. Additionally, 

structural parameters of individual joint-beam connection exhibit significant discrepancies due to in-

accuracy of assembly process. These manufacturing errors were clearly visible during measurements 

by unsymmetrical mode shapes (see: Fig. 3). Hence, each beam-joint is parametrized independently 

on each other to reproduce these imperfections in the updated model. 

In the modal updating procedure only measurements of the structure with joints in locked state are 

taken into account. The reason is residual friction-driven moment of the joint in unlocked state be-

cause the friction parts are still in contact, but with lower value of the clamping force. It causes addi-

tional nonlinearities, hence it is more convenient to identify the system for the locked state of the 

joints. In this case friction force is sufficiently large to avoid slipping of the friction parts in the joint 

and their relative motion does not take place. Details about the lockable joints can be found in [1, 5]. 

Finite element (FE) model representing the structure and parametrization of the uncertain beam-joint 

connections is shown in Figure 1b. A class of FE models (𝐌,𝐊(𝜽)) ∈ 𝒞 is considered, where 𝐌 is con-

stant mass matrix and 𝐊(𝜽) is stiffness matrix defined as follows: 
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 𝐊(𝜃1, 𝜃2, … 𝜃𝑁𝑡) = 𝐊0 +∑𝜃𝑡𝐊𝑡

𝑁𝑡

𝑡=1

, (1) 

   
where 𝐊0 is stiffness-matrix component related to well-known part of the structure, i.e. to steel pro-

files, whereas constant matrix-components 𝐊𝑡 = 𝑘𝑡𝐋𝑡
T𝐋𝑡 scaled by the parameters 𝜃𝑡 describe sought 

stiffnesses of the beam-joint connections. Here this connection is represented by stiffness between 

two rotational DOFs 𝑘𝑡 (see: Fig. 1b, zoomed joint) and 𝐋𝑡 is Boolean matrix responsible for placement 

of 𝑡-th connection. There are 16 parameters describing all beam-joint connections. Steel profiles are 

represented by FEs based on Euler-Bernoulli beam theory with cubic shape functions. Joints are rep-

resented by rigid bodies with defined masses and mass-inertia moments.  

(a)    

 

                                   (b)  

 

Figure 1. (a) laboratory structure quipped with six lockable joints, (b) mesh of FE model and parametrization of 

each beam-joint connection 

3. Identification of the system parameters with Bayesian approach 
In Bayesian approach the most probable values of 𝜽 = [𝜃1 𝜃2 ⋯ 𝜃𝑁𝑡]

T are sought based on ex-

perimental data according to prior gaussian probability density function: 

 𝐽(𝝀,𝝓, 𝜽) = −2 ln 𝑝(𝝀,𝝓, 𝜽|𝝀exp, 𝝓exp) (2) 

   

where: 𝝀exp = [𝜔1
2 𝜔2

2 ⋯ 𝜔𝑁𝑚
2 ]

T
 is vector of squares of measured natural frequencies (rad2/s2), 

vector 𝝓exp = [𝝓exp
(1) T

𝝓exp
(2) T

⋯ 𝝓exp
(𝑁𝑚)T]

T

 collects measured mode shapes. 𝝀, 𝝓 and 𝜽 that min-

imize function 𝐽 are sought. Since both mathematical model as well as measured data are subjected to 

certain errors, vectors of random variables 𝝀 and 𝝓 contain most probable system parameters, 

whereas 𝜽 most probable parameter values of the FE model. In the Bayesian framework we do not 

postulate that numerically calculated modes are equal to measured ones so mode matching problem 

disappears. Iterative procedure of finding optimal values of 𝝀, 𝝓 and 𝜽 is described in [4].  

In order to examine whether parameters are correctly defined the identifiability of the model param-

eters is checked. Parameters are identifiable at some search space if likelihood 𝐿(𝜽) function has only 

one maximum over such defined domain [6]. Function 𝐿(𝜽) is given by following equation:  
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𝐿(𝜽) = 𝐾𝐾𝜆𝑝̂(𝒟𝜆|𝜽, 𝒞)𝐾𝜙𝑝̂(𝒟𝜙|𝜽, 𝒞)

= 𝐾𝐿𝜆(𝜽)𝐿𝜙(𝜽),
    (3) 

   
where 𝑝̂(⋅) is prior gaussian probability density function, 𝒟𝜆 is set of measurement data of natural 

frequencies, 𝒟𝜙 is set of measurement data of mode shapes, 𝐿𝜆(𝜽) is likelihood function correspond-

ing with natural frequencies, whereas 𝐿𝜙(𝜽) for mode shapes, coefficients 𝐾, 𝐾𝜆 and 𝐾𝜙 are scale 

factors normalising likelihood functions to one at their maximums. From equation (3) it is evident that 

identifiability depends not only on chosen parametrization, i.e. class of models 𝒞, but also available 

measurement data contained in 𝒟𝜆 and 𝒟𝜙. 

4. Results 
First, identifiability of vector 𝜽 has been checked. Likelihood function 𝐿(𝜽) has been verified with full-

review method for large search space. Hence, tremendous computational effort related to identifica-

tion of 16 parameters (see: Fig. 1b) has been replaced with reduced two-parameter set: 𝜽̃ =

[𝜃̃1 𝜃̃2]
T, where 𝜃̃1 is related to all vertical beam-joint connections, whereas 𝜃̃2 to all horizontal ones. 

Rotational stiffness 𝑘𝑡 = 104 Nm/rad, 𝑡 = 1, 2, …16, has been selected. The search space Θ with the 

following dimensions has been used: (𝜃̃1, 𝜃̃2) ∈ [10−1, 102] × [10−2, 102]. 

Only one maximum of likelihood function 𝐿(𝜽̃) has been found in Θ, so parameters 𝜃̃1 and 𝜃̃2 are 

identifiable. Functions 𝐿𝜆(𝜽̃), 𝐿𝜙(𝜽̃) and 𝐿(𝜽̃) in neighbourhood of optimal values of 𝜽̃ are shown in 

Figure 2. Function 𝐿(𝜽̃) has greater gradients so it provides more precise information about parame-

ters sought than 𝐿𝜆(𝜽̃) and 𝐿𝜙(𝜽̃). It is consequence of greater amount of measurement data. 

 

Figure 2. (a-c) likelihood function around neighborhood of optimal parameter values for various measurement 

data sets of first five modes 

 

Figure 3. Comparison between mode shapes of updated FE model (gray structure) and measurement  data 

(blue points), natural frequencies in the figure are taken from measurement 
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Table 1. Final values of: updating parameters, frequency relative error and MAC for updated model 

 

Finally, comparison between selected examples of mode shapes identified experimentally and ones 

calculated numerically using Bayesian approach (eq. (2)) is shown in Figure 3. Initial parameter values 

for iterative updating procedure were chosen as appropriate parameters 𝜃̃𝑡, for which 𝐿(𝜽̃) achieves 

maximum, magnified by 1.6. One can see that due to independently parametrized beam-joint connec-

tions numerically calculated mode shapes are very well fitted to asymmetric mode shapes identified 

experimentally. Final values of parameters 𝜽, frequency errors and MAC values are listed in Table 1. 

5. Conclusions 
Bayesian approach for model updating allows to avoid the mode matching problem. Accurate estima-

tion of the local parameters of the structure subjected to high uncertainties is possible. It includes the 

higher-order modes that are very sensitive to parametric modifications and can change their order 

during model updating. 
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